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When the energy of a flow is largely kinetic, many conservative differencing schemes ma> 
fail by predicting non-physical states with negative density or internal energy. We describe as 
positively conservative the subclass of schemes that by contrast always generate physical solu- 
tions from physical data and show that the Godunov method is positively conservative. It Is 
also shown that no scheme whose interface flux derives from a linearised Riemann solution 
can be positively conservative. Classes of data that will bring about the faiiure of such schemes 
are described. However, the Harten-Lax-van Leer (HLLE j scheme is positively conservative 
under certain conditions on the numerical wavespeeds. and this observation allows the 
linearized schemes to be rescued by modifying the wavespeeds emp!oyed. P 1991 Acedems 

Press. Inc. 

1. INTRODUCTION 

Highiy energetic flows often contain regions in which the dominant energy mode 
is kinetic, If this kinetic energy is computed from a conservative numerical 
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approximation for the conservation laws of mass and momentum and then sub- 
tracted from a conservative approximation of the conservation law for the total 
energy, then the resulting internal energy may be negative. This of course leads to a 
failing of the numerical scheme. Attempting to replace negative internal energy 
values by positive ones leads to a non-conservative scheme and may result in a 
wrong shock position or an exponential error growth. Considerable importance 
attaches therefore to any numerical scheme for which the internal energy and density 
remain positive throughout the computational process. We will denote such schemes 
as positively conservative. In this paper we establish that for the Euler equations 
of gas dynamics, involving problems in any number of space dimensions: 
(a) Godunov’s scheme [4] is positively conservative; (bj no Godunov-type scheme 
based on a linearized Riemann solution is positively conservative; and (c) that the 
HLLE-scheme [6, 21 is positively conservative, provided the absolute value of the 
maximal and minimal wavespeeds satisfy certain stability bounds. The results 
obtained in [Z] also indicate how to “fix up” the methods studied under (b). 

For simplicity, we present all our results for a two-dimensional setting, but they 
extend to three dimensions. Our theoretical arguments are based on the fact that 
every considered scheme derives its updated values from a convex averaging 
process, applied to the states that appear in the exact or approximate solution of 
a Riemann problem at the cell interfaces. This implies that an approximate 
Riemann solver leads to a positively conservative scheme if and only if all the states 
generated are physically real. 

Preliminaries 

We consider the (Euler) equations for an inviscid compressible flow. The conser- 
vation form of these equations in two Cartesian space variables is 

P 
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(1.1) 

Here, the density, m = pu and n = pv are the momenta per unit area and e = ye + 
ip(u’+ ~1’) is the total energy per unit area. The physical variables U, u, E are the 
velocities and the internal energy per unit mass. For an ideal gas, the pressure p is 
defined through an equation of state of the form 

p=(ll’- 1)&P, (1.3) 

where 1’ is a constant between 1 and 2. 
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Many of the modern shock capturing schemes contain, as an essential part, t 
exact or approximate solution to one-dimensional Riemann problems of the form 

$+$F(w)=O 
s 

for <CO 
for <>O, 

(l.la) 

(1.45) 

where 
F(w) = n,f(w) + n&w). ra.5) 

Here n = (y1,, n,.) is the unit normal vector at the interface which separates the 
states 1~~ and w,. F(w) is the physical flux and iy the variable normal to the 
interface. 

Since the Euler equations are invariant under a Galilean transformation, it is 
sufficient to consider the Riemann problem. 

~+;f(w)=O 
5 

w(x, 0) = 
{ 

‘l’[ 
for x<O 

II’, for x>O 

in the x-direction. 

2. GODUNOV'S METHOD 

We divide the time into intervals of lengths T and let A be the spatial increment. 
The solution is to be evaluated at time t” = m, where n is a non-negative integer. 
at the spatial increments si = id, i = f 1, 2, . Let vl denote the ceil average 

where Y- _ I + l:z = (i + l/2) A. In Godunov’s method 141 the cell averages are advanced 
in time by solving a Riemann problem at each cell interface. The approximation at 
the next time-level t” + ’ = 12 t + r is then obtained by averaging; i.e., 

where 0” &(x-xi+ &/( t - t”); i + l/2) is the exact solution to the Riemann 
problem at the cell interface xi+ l;z = (i+ l/Z) A at time tn. Equation (2.1) can be 
rewritten as 
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where the numerical flux is given by 

‘yTy,f2 =f(Vi, Oi+ r)=f(o,,(O; i+ l/2)). (2.3) 

We define the set of admissible states by 

P>O and 2pe - (m’ + n’) > 0 . (2.4) 

G contains all states v = (p, m, n, e)’ with positive density and internal energy 
E = e/p - $(u’ + 0’). Given initial states V~EG and if no vacuum occurs in the exact 
solution to the Riemann problem at the cell interfaces, then the updated value (2.1) 
lies again inside G. Note that G is a convex set and that the integration in (2.1) does 
not take us outside G. Thus we have proved that Godunov’s method is positively 
conservative. 

3. FAILURE OF LINEARIZATIONS 

The theory of Godunov-type methods, i.e., of numerical methods which are based 
on the exact or approximate solution of a Riemann problem at cell interfaces, is 
well developed for scalar conservation laws on Cartesian grids; see, e.g., [3]. Today 
we have a number of schemes for which convergence results exist [S, 11. However, 
new problems can arise when these schemes are applied to non-linear hyperbolic 
systems of conservation laws. 

The difference scheme given by Roe [9] uses an approximate solution to the 
Riemann problem, found by solving the linearized Euler equations. For some 
choices of initial data that scheme is unstable although a solution exists. It is shown 
in the proposition below that an instability arises with any attempt to substitute 
linearized solutions, because for certain data, any linearization will yield a negative 
density or pressure. We express this by saying that certain Riemann problems are 
not linearizable. 

PROPOSITION 3.1. For the Riemann problem (1.6) with the initial data wL = 
(p, -m, 0, e)’ and w, = (p, m, 0, e)T and m > 0 one can distinguish between the 
following three cases: 

(a) If 4lfpe/(31’ - 1) - m2 < 0 a oacuum occurs in the solution. 

(b) If 4ype/(3y - 1) -mm2 > 0 and (II- 1) pe-m2 < 0 the problem has a 
solution with positiae density and internal energy, but is not linearizable. 

(c) If (/I - 1) pe - m2 > 0 the problem has a solution with positive density and 
internal energy and is linearizable. 
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Proofi The condition (a) for the occurrence of a vacuum is well known and can 
be found in [IO]. To investigate the linearization property,, we solve a Riemacn 
problem for tbe linear equation 

with the special initial states wi = (p, ---I, 0, P)= and w, = (p, m, 0, ef’. Here & is a 
given average value about which the conservation law is linearized. The solution 
consists of four states w(, wl, w2, w:. Let 

R,=(l,ti-?,E,&-il~:)~, (3.22-i 

RZ=(l, ~2, E, (tir:+t;‘),/2)=, (3.2ci 

R,=(l,ti+?,ti,fi+~t)~ i3.2d j 

be the right eigenvectors of A(+), where C! is the average sound speed and I? the 
average total enthalpy. Define CX~ (i= 1, ..,, 4) as the coefficients of the projection of 
w, - w( onto the right eigenvector basis; i.e. 

W,-W,=u!R,+~2R2+XjIQ;frrl 

The states? wi and w2 are given by 

w,=w,+cx,R, 

and 

We have to investigate the conditions 

aud 

The formulas for the coefftcients ai (i= 1, . . . . 4) are well known [9]. In our case 
they simplify to 

ci, = -m/C, (.%a ) 

a, =o {.?.6b) 

LYj = 2n (3.6c) 

a4 = m/t (3&d ) 
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and we get 

PI =P-42, p2 = p -m/E 

and our first condition guaranteeing positive density becomes 

t 9 m/p. 

In the case n = 0, the condition for a positive pressure in region one is 

2e, -$O. 
PI 

Since nrr = -m - (~n/?)(ti - i’) = 0 we merely obtain 

m 1 m P2 
e,=e-:(h-tiC)=e-T- 20 

C CY-1 

or 

tg(y-lji. 

(3.7) 

0.8) 

(3.9) 

(3.10) 

(3.11) 

Thus we obtain, if both pI and p1 are positive, 

m 
-<P<()‘- 1); 
P 

and this constraint can only be satisfied if 

(y - 1) pe - m2 3 0. (3.12) 

This completes the proof. Note that if m is negative (compression case) the problem 
can be linearized, because both p, and e, are positive for any choice of c!. 

Remarks. The conditions (a), (b), and (c) in Proposition 3.1 can be rewritten in 
terms of the Mach number, M, as 

(a) M>~/(Y- 1); 

(b) J2/(~(3-Y))~M<~/(Y- 1); 

Cc) MG J2/(P(3 -y)). 

For a gas with y = 1.4 the dangerous zone (case (b) in Proposition 3.1) is reached 
already at M= 0.94. 

The reason for the failure of any linearization in one dimension is the occurrence 
of two rarefaction waves in the exact solution to the Riemann problem. A different 
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failure of linearizations can occur in the two-dimensional form (1.6) of the Euler 
equations and is caused by a strong shear flow in the ),-component of the velocity. 

PROPOSITION 3.2. For the Riemann problem (i.6j ii ith the initiai data 
11’~ = (p, -m, -n, e)T and w, = (p, m, n. ejT with m >, 0 and II >, 0 we can di~tingui:!; 
bertt’een the three c&es: 

gal If4y(pe-$n’)/(3y-l)- mZ 6 0 42 t’acuilm occ14rs in the solution. 

(b) If~~(pe-~n’)/!31!-1)-m’>O and 

tile problem has a solution with positive density und internal energy*, bu: is not 
li~zearizable. 

1 n2 ( 1 r- 
2 mn 1 t??2 -_ -_ 

e-?p ‘v;.-, p +?-I p 

the problem has CI solution with positive pressure rend density and can also be 
hearired. 

PYOC$ Since the y-component II= n/p of the velocity is advected with the speed 
of the .x-component M = m/p of the velocity at the contact discontinuity, the condi- 
tion (a) for the occurrence of a vacuum follows from the corresponding condition 
in the one-dimensional case. The necessary and sufficient condition for 
li~earizability is that a ? 2 m/p exists such that 

where P’= e - in’;!p. The quadratic polynomial in E (2.13 ) has real roots if and only 
iF 

1 (y-l)?; E Z 
4 ( 

(3.14) 
m 1 P, 

--(~--1)p. 

If 

(;!- l)P+p<* 

m P - 

the roots of the polynomial (3.13 ) are less than m,ip and a negative density occurs 
in the approximate solution. After some rearrangement the LHS of (3.14) can be 
expressed as the difference of two squares and it follows that (3.14) is equivalent to 

and the proof is complete. 
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Proposition 3.2 has a nice geometrical interpretation. The necessary and sufficient 
condition for the linearizability is that either m < 0 or fn > 0 and 

(3.16) 

By introducing the variables, 

C=%>O and fi=g,O, (3.17) 

Eq. (3.16) reduces to 

(3.18a) 

and the condition for positive pressure in the data becomes 

2 3 rii’ + n=. 

Furthermore, we obtain for the condition of a continuum solution 

(3.18b) 

3>‘- 1 -2 

-rn’+E< 1 
41, 2 

(3.18~) 

The regions defined by (3.18 j are depicted in Fig. 3.1. The lower half (n < 0) of the 
figure follows from symmetry properties of the Euler equations. 

No continuum 
solution 

Linearizable 

Not 
linearizable 

FIG. 3.1. The geometrical interpretation of Proposition 3.2. The points labelled 1, 2, 3 indicate the 
test problems studied in Section 6, and the small chain-dotted line shows the limits of Roe’s linearisation. 
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It is evident from Fig. 3.1 that in most cases the failure of hnearizations is caused 
by a shear flow in the r-component of the velocity vector; e.g., condition (ci in 
Proposition 2.1 applies for p = 1, nz = 1, II = 0, and e = 5 and the solution of the 

iemann problem (1.6 j is linearizable, whilst for p = 1, ~1 = I, e = 5, and jr = 2: 
condition (b) in Proposition 1.2 is satisfied and the solution ~9 the Riemann 
problem ( 1.6) is not linearizable. 

Renznrk. Any particular choice of linearization is vahd within some subset of 
the indicated region in Fig. 3.1. The boundary of the subset can be found by 
substituting the value of E used in the linearization into Eq. (3.13) or into i! = ~$9. 
For Roe’s linearization, we have 

The more restrictive condition comes from (3.13) and gives a third-order algebraic 
expression in rtr’, n’. This has been used to draw the chain-dashed line in Fig. 3.1, 
from which it is apparent that Roe’s linearization can be applied to the great 
majority of hnearizable problems within the category displayed. 

4. THE HLLE-METMXI 

The HLLE-Riemann solver [6,2] consists of three constant states, i.e.: 

i 

V; for .I! <b,, I,?1 
mHLLE(x/t; i + l/2) = v;‘+ 1;2 for Vh~+l,ZI<~‘<hj+I,I 14.1 .i 

vr+ 1 for b:+ll:<:<‘, 

where X’ = s - X, + 1,2. The average state v;+ i:2 is defined such that the Riemarm 
solver is consistent with the integral form of the conservation law; i.e., 

(3.2) 

e, bj,, 2 and b{,1:.2 are numerical approximations for the largest and allest 
sical signal-velocities in the exact solution to the Riemann problem. avim c 

computed the approximate solver at the cell interface, we obtain the cell average at 
the next time-ievel similar to (2.1), 

This again can be written in conservation form 
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with the numerical flux-function 

bT+ 1;‘2 ’ b, Ii2 

+b:,dy+1;2 
lvi+ 1 -Vi), (4.4b) 

where bj?+ 1,2 = max(b;+ 1,,2, 0) and b, 1:2 = min{bj+ 1,2, O}; see [2] for details. 
The HLLE-scheme (4.4) with the numerical signal velocities 

b;+ l/2 = min(af+ ,,‘z, ui- ci) (4.5a) 

and 
b:+1,rz= max(al+,!2,ui+l+ci+1), (4.5b) 

where a:+ 1,,,2 (k = 1, . . . . 4) are the eigenvalues of the Roe linearisation for (1.6a) and 
c = (])pI/p is the sound speed, is positively conservative. The proof is straight 
forward: The numerical signal velocities (4.5) are lower and upper bounds for the 
physical signal velocity. Therefore the average state (4.2) is given by 

1 
v;+ ,;2 = s 

b;+ ,.lr 
(b;, 1;2 -bf+ 1;2) 5 bf+, 2’ %dx’k i+ 4) dx’, 

where o&x’/r; i + 5) is the exact solution to the Riemann problem at the cell-inter- 
face xi + rjz. As long as no vacuum is present, all states in the exact solution to the 
Riemann problem (1.6) are inside the set (2.4). Since G is convex, the averaging 
process (4.6) will give a value inside G. Thus the average state (4.6) is inside G. 
Furthermore, the solution at the next time-level t”+’ is obtained from the averaging 
process (4.3), which again will not take us outside G, since G is convex. Thus we 
have proved that the HLLE-scheme is positively conservative. 

An enlargement of the numerical signal velocities increases the numerical dissipa- 
tion in the HLLE-scheme; e.g., the numerical signal velocities 

bl+,/,={lui+1/21 +Ci+1!2, luil +Ci, lui+ll +Ci+l} (4.7a) 

b;, 1,‘2 = -b:+1.‘2, (4.7b) 

where ci+ ,,,* = (a:+ ,;? -a,!+ r/,)/2 and uj+ 1,2 = (a:, l,z + al+ 1;2)/2, reduce (4.4b) to 

fi+ I,‘2 = ~{f(Vi)+f(Vi+,)-b:+,!2(~i+1-Vi)} (4.8) 

which is a numerical flux function of Lax-Friedrich type. The scheme (4.4a), (4.8) 
is very diffusive and gives significantly less accurate results than the scheme 
(4.4), (4.5). 

The numerical signal velocities (4.5) can be improved concerning the numerical 
dissipation near rarefaction waves, subject to the restriction that the scheme (4.4) 
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is positively conservative. Some algebra shows that the scheme (4.4) is positively 
conservative if the numerical signal velocities satisfy the inequalities (see Appendix i, 

and these results are the sharpest possible (in the one-dimensional case) for 
bc+ I,2 = b’(oj) and b;, L,z = b”(tli+ 1). Hence the numerical signal velocities, 

bf+ I!2 = min(at, r:,, U, - fici) (4.1OZl‘r 

b1+1:.2=max~a~+,,,,~4j+l~~~j+ll~, (4.10b 1 

lead to a positively conservative HLLE-scheme. 
Since 

ui-ci<Lf,-~pc, and "i+1+Pci+~~u~+l+c;+l 
(L!.1l) 

the numerical signal velocities (4.10) decrease the dissipation for most rarefaction 
waves. If the states ~1~ and ~l~+r are connected by a single shock wave, then the 
numerical signal velocities (4.5) and (4.11) reduce both to 

bi+,,=af+,:l or bj+i2=a~+,z, (4.42) 

which gives the optimal numerical dissipation for a shock wave; see [Z] for details. 
Another problem associated with the failure of the Roe-average eigenvalues 

ai+ 1 z (i = I, . . . . 4) for rarefactions was addressed in [ ll]. M. Yinokur observed that 
it is possible that the Roe average eigenvalue a.:+ 1,2 or at+ ,,? could lie outside the 
range of values determined by A’(L)~) and J’(ritIj, respectively, 1.4(rj and ;.4(r2_ ij. 
In particular. if the normal velocities zli and ~4~~ I are close to the sonic speed c,. the 
corresponding eigenvalues could both be of one sign, while the oe averaged +,geg- 
value could have opposite signs. Assume 

4, I 7 < i’(~:~) < iwl(vL +, 1: 

which holds for ail the examples in [ ll]. In this case, 

[1.!3? 

b(, l,z = ai+ ,.z < E.‘(Oi) 6 A’jl;[, 1) (4.14) 

for the algorithms (4.5j and (4.10). Thus the numerical signal velocities (4.5) or 
(4.10) introduce more numerical dissipation into the scheme (4.4) than the physical 
signal speed A1(tli). However, the failure (4.13) is not significant for the scheme (4.4 ) 
and also for Roe’s scheme (as we will see in the next section), because an enlarge- 
ment of the numerical signal velocities retains the stability of the HLLE-scheme 
(4.4); see [2] for details. Furthermore, we did not observe any loss of resolution in 
the numerical solution through the additional numerical dissipation 
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5. SOME REMARKS ABOUT ROE'S METHOD 

In this section we give a different simple explanation for the failure of Roe’s 
method. A modified HLLE-scheme was proposed in [2]. The modified Riemann 
solver is delined by 

oHLLE&‘lC i + VI 

1 

“i for ~‘<b(+i,~f 

“if 112 + (x-uj+ l/21)(6f+ 1;20if+ lQ8f+ l,Q + $i’+ l,c2$3+ I;*@:+ 112) = 
for bf+1:2t<x‘<b:+,,2t 

(5.1) 

“it1 for bf+,,,t<x’, 

where fiz+i,‘* = @“(ciri+ i.‘?) and R3 = R3(ki+ I!?) are the second and third right eigen- 
vectors of the Jacobian matrix df(ti[+ i .?) = A(tii+ 1.‘2) evaluated at an average state 
Gi+ 1,2 = (p, ti, 6, C)‘. oif+ 1:2 = c?(tij+ ,,,2) and $+ 1,,2 = cz3(fij+ L,2) are the coefficients 
of the projection of (vi, i - vi) onto these eigenvectors; i.e., 

s^f+ ii1 and @+ 1.:2 are positive parameters which control the amount of anti-diffusion 
in the linear degenerate fields. For c?;+ ,!I = 0 and &+ ii2 = 0, we retain the Riemann 
solver (4.1). Several choices for the average state fii+ ,!2 are possible, we choose here 

/ Pi+1!2=y PiPi+l;IY (5.3a) 

(5.3b) 

(5.3c) 

(5.3d) 

(5.3e) 

The value Ui+ ii1 in (5.1) is an approximation for the velocity at the contact discon- 
tinuity, defined by 

lli+ l/2 = 
b:, Ii2 + bj, 1,c 

2 

The Godunov-type-scheme corresponding to the Riemann solver (5.1) can again be 
written in conservation form 

w; + l = WY - q-fr, l.‘2 - Tg- ,;2 > (5.5a) 



GODUNOV-TYPE METHODS 

-with 

IHLLEhZ = fHLLE _ bi: I:2 . b, li2 
I+ 1,2 

l+‘.? b:+1.:2-b,‘..2 

x (Sf, I;? s;, 1.2 El;+ I;? + g+ &+ L 2 (SSb! 

The anti-diffusion coefficients in (5.1) are defined such that they take out excess 
dissipation in the linear degenerate fields, subject to the restriction that the stability 
of the HLLE-schemes is to be preserved; we set 

It was noted in [2], that if we choose for the numerica! signal velocities the largest 
and smallest eigenvalues of a Roe-average matrix, i.e., 

b(, 1 ‘2 = a:+ I ‘2 and hj,, 2=~4+1.2r (5.7) 

then the HLLEM-scheme (5.5) becomes equivalent to Roe’s scheme. If we apply 
this scheme to the initial-value problems described in Proposition 1.1, then the pro- 
jection values tit+ 1,2 and 6;+ 1,,2 vanish and the HLLEM-scheme (5.5), (5.7:) differs 
from the WLLE-scheme (4.4) (4.5) only by the definition of the numerical signal 
velocities. Computation of the average state (4.2): with the numericai signal 
velocities (5.7) may result in a negative density for the case (b) of Proposition 1.1. 
We obtain, furthermore, for II’, = (pi5 -H?~, 0, piiiT and IV; = (.gi+ i, tizi+ r, 0. ei+ i j’. 

u; - cj -=c a;, i,2 and n;‘+,,,<ui+ltci+l. i5.E) 

Thus, we conclude: The reason for the failure of Roe’s method in solving case (b) 
of Proposition I.! is that the numerical signal velocities (in this case the eigenvaiuas 
of the Roe average matrix) of Roe’s Riemann solver underestimates the physical 
signal velocities. A similar argument can be applied to the initial value problems of 
Proposition 1.2, if we reset the anti-diffusion coefficient 631 i,j to zero. 

R~~zark. The HLLEM-scheme can be rewritten as 

with 
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(51Oc) 

(5.10d) 

The scheme (5.9) can also be considered as an improvement to Roe’s original 
scheme. In contrast to the original Roe-scheme this scheme does not require 
an artificial entropy fix and does not suffer under the instabilities described in 
Section 3. 

6. NUMERICAL RESULTS 

The Riemann problem described in Propositions 3.1 and 3.2 occurs, e.g., when 
reflected boundary conditions are used at a solid wall boundary and the fluid flow 
is directed away from the wall. A typical example is the external flow behind an 
obstacle. Here starting a steady state computation by setting the initial data equal 
to the freestream flow field can be disastrous. In this section we show numerical 
results for two test problems which complement our analytical findings. First 
we consider a Riemann problem of the form (1.6) with the initial data 
tit = (p/ = 1, nz, = 2, n, = 0, e, = 3)T and w, = (p, = 1, rt2, = 2, n, = 0, e, = 3)T. Subse- 
quently, the problems are abbreviated by merely quoting the right-hand state vec- 
tor, here (l-2-&3) labelled 1 in Fig. 3.1. The solution of this problem consists of 
two rarefaction waves, one travelling to the left and one to the right. The initial 
data satisfy condition (b) of Proposition 3.1. The numerical results are depicted 
in Figs. 6.1, 6.2, and 6.3. In all calculations we used a fixed uniform grid in space 
with the step size Ax = 0.01. The time increment 5 was calculated in each time step 
according to 

(6.1) 

Roe’s scheme [9] explodes after a few time-steps. Figure 6.1 shows numerical 
results for Roe’s scheme with the entropy fix proposed by Harten and Hyman [5]. 
The pressure and the velocity of the exact solution are represented by the solid line, 
the numerical approximation is represented by dots. Unphysical oscillations are 
visible at time t = 0.05. Roe’s scheme with the commonly used entropy fix in [7] 
also fails after a few time steps. The results for the HLLE-scheme (4.4) at times 
t = 0.05 and 0.1 are depicted in Fig. 6.2. The HLLE-scheme solves this problem 
without any difficulties. The next figure shows the results for the HLLEM/Roe- 
scheme (5.9), (5.10) with the numerical signal-velocities (4.5). The results are similar 
to the results for the HLLE-scheme. Figures 646.6 represent the results for a 
Riemann problem of the form (1.6) with the initial data W/ = (pc = 1, m, = -1, 
n, = n, e, = 5)T and NV, = (p, = 1, m, = 1, n, = n, e, = 5)T. The exact solution consists 
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of two rarefaction waves moving in opposite directions, separated by a shear 8ow 
in. the y-direction. The initial data with n = 0 satisfy condition (c) of Proposition 1.1 
(point 2 in Fig. 3.1). All of our schemes solved this problem without real difficuity. 
although Fig, 6.4 shows some not entirely smooth behaviour in the density. 
However, for the same test problem with IZ = 2 (point 3 in Fig. 3.1)? Roe’s scheme 
explodes after a few time-steps. This is caused by the presence of shear flow; see 
Proposition 3.2b. The results for the HLLE-scheme and the modified HLLE-scheme 

Qensity 
I 

Momentum 

Energy , 

I ! 

Pressure 

FIG. 6.1. Numerical result of Roe’s scheme with the entrcpy fix in [F] for the i-2+3 probiem zt 
time I = 0.05. 
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with $:+ L:2 reset to zero are shown in Figs. 6.5 and 6.6. Both schemes solved this 
test problem without breaking down, but the results from the unmodified scheme 
are better behaved. 

Concluding Remarks 

Considerable importance attaches to any numerical scheme for which the internal 
energy and density remains positive during the computational process. It was 

Density 

'?LF 
-0 5 0 05 

Momentum 

Energy 

Pressure 

., 
0 

o- , 
-05 0 05 

FIG. 6.2a. Numerical result of the HLLE-scheme for the l-2&3 problem at time t = 0.05. 
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4 ,n ..+!3: 

proved that Codunov’s and the HLLE-scheme have this property, w 
which are based on a local linearized Riemann solver (e.g., Roe’s scheme) may lead 
to an unphysical negative density or internal energy during the computational pro- 
cess. The interpretation of Roe’s scheme as an HLLE-scheme with the appropriate 
anti-diffusion term in the linear degenerate field leads to an improved scheme, 
which does not require an artificial entropy fix and does not suffer from the 
instabilities described in Section 3. The form (5.9 j of this HLLEM-scheme can be 
used to fix up computer programs, which are based on the original Roe-scheme. 
These results open the way for the application of a class of conservative differencing 
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FIG. 6.2b. Numerical result of the HLLE-scheme for the l-2+3 probkm at time i=D.I. 
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schemes in contexts where they have previously been regarded with suspicion. 
Nevertheless, all our results are only first-order accurate as yet, and there is still 
work to do in achieving consistently high-quality solutions. 

APPENDIX: PROOF OF THE POSITIVITY CONDITION (4.9) 

Each conserved variable qi in the central zone of the HLLE-Riemann solver (4.1) 
is given by 

W-b%, .f,-fc q*= ),2-b/ -- b”-bf’ t-41) 

1 Machnumoer 

Density 

I 

Momentum Pressure 

FIG. 6.3. Numerical result of the HLLEM/Roe-scheme for the l-2U3 problem of time t = 0.1 
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We omitted the subscript i + l/2 and set q, = qi+ 1. qr = qi. We obtain for the 
density 

p*= 
alPl+a/P, 

b,-b/ ' 

where we have used the abbreviations 

[, A2 i 

a, = b, - 11, and a, = ur - h, (A3) 
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Fro. 6.4. Numerical result of Roe’s scheme For the !-I+5 problem at time r=0.1 

931 92 3-i 
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Sufficient conditions for positive density are 

aL,a,30 

and 
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FIG. 6.5. Numerical result of the HLLE-scheme for the l-l-2-5 problem at time [ =O.l. 
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It follows from (A5) and (A2) that 

a2 + a/ >, fly - u,. 

To ensure positive pressure we need 
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FIG. 6.6. Numerical result of the HLLEMiRoe-scheme for the 1&-2-S problem at time i = 0.1 
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Some algebra shows that this condition is equivalent to 

Condition (As) defines the exterior of an ellipse or hyperbola in the plane (a,, a,). 
One way to ensure that this condition is always satisfied is to assume c’, - v,=O 
(which is the worst case). We then treat the expression as quadratic in du = U, - uL 
and insist that no values of the coefficients give real roots. This condition is 

which is equivalent to 

Condition (AlO) is satisfied by 

(3 > ti “2 
/‘2y f 

C-410) 

(Al la) 

a2>y-12 

7 ’ 21’ * 
(c 51 sound speed) (Allb) 

and these results are the sharpest possible of the form ~~=a(q,) and U, =a(q,). 
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