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When the energy of a flow is largely kinetic, many conservative differencing schemes may
fail by predicting non-physical states with negative density or internal energy. We describe as
positively conservative the subclass of schemes that by contrast always generate physical solu-
tions from physical data and show that the Godunov method is positively conservative. It is
also shown that no scheme whose interface flux derives from a linearised Riemann solution
can be positively conservative. Classes of data that will bring about the faiiure of such schemes
are described. However, the Harten—Lax—van Leer (HLLE) scheme is positively conservative
under certain conditions on the numerical wavespeeds. and this observation allows the
linearised schemes to be rescued by modifying the wavespeeds employed. € 1991 Acederue

Press. inc.

1. INTRODUCTION

Highly energetic flows often contain regions in which the dominant energy mode
is kinetic. If this kinetic energy is computed from a conservative numericel
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approximation for the conservation laws of mass and momentum and then sub-
tracted from a conservative approximation of the conservation law for the total
energy, then the resulting internal energy may be negative. This of course leads to a
failing of the numerical scheme. Attempting to replace negative internal energy
values by positive ones leads to a non-conservative scheme and may result in a
wrong shock position or an exponential error growth. Considerable importance
attaches therefore to any numerical scheme for which the internal energy and density
remain positive throughout the computational process. We will denote such schemes
as positively conservative. In this paper we establish that for the Euler equations
of gas dynamics, involving problems in any number of space dimensions:
(a) Godunov’s scheme [4] is positively conservative; (b) no Godunov-type scheme
based on a linearized Riemann solution is positively conservative; and (c) that the
HLLE-scheme [6, 2] is positively conservative, provided the absolute value of the
maximal and minimal wavespeeds satisfy certain stability bounds. The results
obtained in [2] also indicate how to “fix up” the methods studied under (b).

For simplicity, we present all our results for a two-dimensional setting, but they
extend to three dimensions. Our theoretical arguments are based on the fact that
every considered scheme derives its updated values from a convex averaging
process, applied to the states that appear in the exact or approximate solution of
a Riemann problem at the cell interfaces. This implies that an approximate
Riemann solver leads to a positively conservative scheme if and only if all the states
generated are physically real.

Preliminaries
We consider the (Euler) equations for an inviscid compressible flow. The conser-
vation form of these equations in two Cartesian space variables is

ow of(w) dg(w)
= =0 1.1
ot + Ox + oy : (L.1)
p m n
m m*/p+p mn/p
= = ’ = 1.2
w={ | f(w) mnp | g(w) o+ p (1.2)
e (e+ p)m/p (e+p)nfp

Here, the density, m = pu and n= pv are the momenta per unit area and e = pe +
$p(u? +v?) is the total energy per unit area. The physical variables u, v, ¢ are the
velocities and the internal energy per unit mass. For an ideal gas, the pressure p is
defined through an equation of state of the form

p=0—1ep, (13)

where 7 is a constant between 1 and 2.
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Many of the modern shock capturing schemes contain, as an essential part, the
exact or approximate solution to one-dimensional Riemann problems of the form

ow ¢
—+zF(w)=0 (1.43)
o taz )
sy JWr for &<0 (a
(&, 0 —{u, for ¢>0, VR
where
F(w)=n,f(w) +n, g(w) (1.5)

Here n=(n,, n,) is the unit normal vector at the interface which separates the
states w, and w,. F(w) is the physical flux and ¢ the variable normal to the
interface.

Since the Euler equations are invariant under a Galilean transformation, it is
sufficient to consider the Riemann problem.

ow ¢
NPl fw)= (1.5
6t+8.‘§ (w)=0 (1.8a)
L for x<O0
wix, 0)=4"¢ 0T XS (165)
W, for x>0

in the x-direction.

2. GopuNOV’'S METHOD

We divide the time into intervals of lengths 7 and let 4 be the spatial increment.
The solution is to be evaluated at time 7" =nt, where # is a non-negative integer,
at the spatial increments x,=id, i= + 1, 2, ... Let v/ denote the cell average

1 poern
ZJtz w(x, ") dx,

where x; ,,={(i+ 1/2) 4. In Godunov’s method {47 the cell averages are advanced
in time by solving a Riemann problem at each cell interface. The approximatiozn at
the next time-level "*! =" 4 7 is then obtained by averaging; ic.,

1 s4i2 . {1 p0
b= [ ehx/ni—12)de— [ e (dniti2)dx, (20
Ay A4 45
where @%,((x— X, 1.)/(t—1t");i+1/2) is the exact solution to the Riemann
problem at the cell interface x;, ,,=(i+1/2) 4 at time . Equation (2.1} can be
re-written as
T

l_t+1=v_

i i A (T:}+ 127 ?:'l~— 1,2)7
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where the numerical flux is given by
Boot =10, 01 1) = f(@Rp(0; i+ 1/2)). (23)

We define the set of admissible states by

p>0 and  2pe— (m*+n*)>0}. (2.4)

n X ¥

G contains all states v=(p, m, n,e)’ with positive density and internal energy
e=e/p —3(u’ +v?). Given initial states v’¢G and if no vacuum occurs in the exact
solution to the Riemann problem at the cell interfaces, then the updated value (2.1)
lies again inside G. Note that G is a convex set and that the integration in (2.1) does
not take us outside G. Thus we have proved that Godunov’s method is positively
conservative.

3. FAILURE OF LINEARIZATIONS

The theory of Godunov-type methods, i.e., of numerical methods which are based
on the exact or approximate solution of a Riemann problem at cell interfaces, is
well developed for scalar conservation laws on cartesian grids; see, e.g., [3]. Today
we have a number of schemes for which convergence results exist {8, 1]. However,
new problems can arise when these schemes are applied to non-linear hyperbolic
systems of conservation laws.

The difference scheme given by Roe [9] uses an approximate solution to the
Riemann problem, found by solving the linearized Euler equations. For some
choices of initial data that scheme is unstable although a solution exists. [t is shown
in the proposition below that an instability arises with any attempt to substitute
linearized solutions, because for certain data, any linearization will yield a negative
density or pressure. We express this by saying that certain Riemann problems are
not linearizable.

ProposiTION 3.1.  For the Riemann problem (1.6) with the initial data w,=
(0, —m, 0,e)" and w,=(p, m,0,e)" and m>0 one can distinguish between the
Sfollowing three cases:

(@) If 4ype/(3y — 1) —m? < 0 a vacuum occurs in the solution.
(b) If 4ype/(3y—1)—m*>0 and (y—1)pe—m*<0 the problem has a
solution with positive density and internal energy, but is not linearizable.

(c) If (y—1) pe—m*>0 the problem has a solution with positive density and
internal energy and is linearizable.
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Proof. The condition (a) for the occurrence of a vacuum is well known and can
be found in [10]. To investigate the linearization property, we solve a Riemann
problem for the linear equation

é é

—w+AW)—w=0, A=f, (3.1
a v TAM g ”
with the special initial states w,= (p, —m, 0, ¢)" and w,=(p, m, 0, e)*. Here & is a
given average value about which the conservation law is linearized. The solution

congicte of far ot T P
COnNSsIsts Ol iour states w,, w,, wo, w,. Let

Ry =(1,4—¢ 8 H—ad)', (3.2a}
Ry= (1,4 & (4> +5°)/2)7, (3.2¢)
Ro=(1,4+¢ 8 H+ié)" (3.2d)

be the right eigenvectors of A(W), where ¢ is the average sound speed and A the
average total enthalpy. Define o, (i=1, ..., 4) as the coefficients of the projection of
w,—w, onto the right eigenvector basis; i.e.

WZ—W/=a1R1+3CZR2+OC3R3+9{4R4. :

L
Lod
o

The states, w, and w, are given by

w =w,+uR, {34s)
and
W, =w,+ o, R +,R,+ 6 Ry=w,— oy R,. {3.45)
We have to investigate the conditions
120,  2pe,—mi—nl>0, {3.5a}
and
p2=0,  2p,e;—ms—ni=0. {3.5b)

The formulas for the coefficients «; (i=1, .., 4) are well known [97]. In our case
they simplify to

o = —m/é, (3.6a)
oy, =0 {3.6b}
oy =2n {3.8¢}

ag=mjé (3.6d)
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and we get
pr=p—mfé,  p,=p—mfc (3.7)
and our first condition guaranteeing positive density becomes
¢z myp. (3.8)

In the case » =0, the condition for a positive pressure in region one is

2¢,— 130, (39)
P
Since m, = —m — (m/é)(i1 — ¢) =0 we merely obtain
er=e—2(h—it)=e—2 >0 (3.10)
cy—1
or
. e
é<(y~—1)—. (3.11)
m
Thus we obtain, if both p, and p, are positive,
Pci<ip-n=
p m
and this constraint can only be satisfied if
(y—1) pe—m*=0. (3.12)

This completes the proof. Note that if m is negative (compression case) the problem
can be linearized, because both p, and e, are positive for any choice of ¢.

Remarks. The conditions (a), (b), and (c) in Proposition 3.1 can be rewritten in
terms of the Mach number, M, as

(a) M=>2/(y—1);
(b) V2/(yB—y)<M<2/(y—1);
(c) M<2/(y(3—-7))

For a gas with y = 1.4 the dangerous zone (case (b) in Proposition 3.1) is reached
already at M =0.94.

The reason for the failure of any linearization in one dimension is the occurrence
of two rarefaction waves in the exact solution to the Riemann problem. A different
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failure of linearizations can occur in the two-dimensional form (1.6) of the Euler
equations and is caused by a strong shear flow in the y-component of the velocity.

PROPOSITION 3.2. For the Riemann problem (1.6} with the initial data
w,={(p, —m, —n,e)" and w,=(p, m,n, &)¥ with m=0 and n>0 we can distinguish
berween the three cases:

(a) I 4v(pe—in?)/(3y — 1) —m2 <0 a vacuum occurs in the solution.
(o) If 4y(pe—35n*)/(3y—1)—m? >0 and

< 1n2)< [ 2 mn+ i om?
e__._ T —__9
2p y—=lp (-1 op

the problem has a solution with positive density and internal energy, but is not
linearizable.

() If

( 1n2> [ 2 mn 1 m?
e—=—|)> —t—

2p) Ny—=1p y—tp
the problem has a solution with positive pressure and density and can alse be
linearized.

Proof. Since the y-component v=#n/p of the velocity is advected with the speed
of the x-component u=m/p of the velocity at the contact discontinuity, the condi-
tion {a} for the occurrence of a vacuum follows from the corresponding condition
in the one-dimensional case. The necessary and sufficient condition for
linearizability is that a é > m/p exists such that

17 / m?
{_pz 52+(pé+ )C’—me\%>0§
Cor—l \ y—1 J

(s
Ynad
o)

where &=e — 3n’/p. The quadratic polynomial in ¢ (2.13) has real roots if and only
if

1<(———1—)—e+21) —p-nizo (3.14)
4 m y i)
[
y—1)é
G-he m_o
m p

the roots of the polynomial (3.13) are less than m/p and a negative density occurs
in the approximate solution. After some rearrangement the LHS of (3.14) can be
expressed as the difference of two squares and it follows that (3.14) is equivalent to

1, < 2 mn tom? (3.15)
e—=nv — — .15}
2"P)EN I, TS

and the proof is complete.

[¥9)
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Proposition 3.2 has a nice geometrical interpretation. The necessary and sufficient

condition for the linearizability is that either m <0 or m >0 and

<€_1n2>> 2 mn 1 m?
2p)"Ny=1p y=1p"

By introducing the variables,

m n

=0 and n=
Jre

=0,
Eq. (3.16) reduces to

1> [—m+—=i=0

y—1

fm‘ -

and the condition for positive pressure in the data becomes

2=m’+ i

Furthermore, we obtain for the condition of a continuum solution

Iy—1 _, i?
! m*+—<1.

4y 2

(3.16)

(3.17)

(3.18a)

(3.18b)

(3.18c¢)

The regions defined by (3.18) are depicted in Fig. 3.1. The lower half (n <0) of the

figure follows from symmetry properties of the Euler equations.

Not

No continuum
sotution

Tinearizable

FiG. 3.1. The geometrical interpretation of Proposition 3.2. The points labelled 1, 2, 3 indicate the
test problems studied in Section 6, and the small chain-dotted line shows the limits of Roe’s linearisation.
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it is evident from Fig. 3.1 that in most cases the failure of linearizations is caused
by a shear flow in the v-component of the velocity vector; e.g., condition (¢} in
Proposition 2.1 applies for p=1, m=1, n=0, and e=35 and the solution of the
Riemann problem (1.6) is linearizable, whilst for p=1, m=1, e=35, and n=1,
condition (b) in Proposition 1.2 is satisfied and the solution of the Riemann
probiem (1.6} is not linearizable.

Remark. Any particular choice of linearization is valid within some subset of
the indicated region in Fig. 3.1. The boundary of the subset can be found by
substituting the value of ¢ used in the linearization intc Eq. (3.13) or into ¢ =m1/a.
For Roe’s linearization, we have

2

&= (y—Dlvelp— 303 — Dim* + n*)ip*].
The more restrictive condition comes from (3.13) and gives a third-order algebraic
expression in m°, i>. This has been used to draw the chain-dashed line in Fig. 3.1,
from which it is apparent that Roe’s linearization can be applied to the great
majority of linearizable problems within the category displayed.

4. Tue HLLE-METHOD

The HLLE-Riemann solver [6, 2] consists of three constant states, i.c.,

L > ?
\¥ for x'<b, .,
Oy p(X/5 i+ 1/2)=4v), for &7, .<x"<bi 1 {4.13
n . o
Vi, for by ,.1<x,

where x'=x—x,,,,. The average state v/, ,, is defined such that the Riemann
solver is consistent with the integral form of the conservation law; ic.,

— v 13
+127 b» _b/ i Le

4 7 _ K 1 (vl Y £{gh

n bl iaVivi—biv 12V, ALY, Jv)
. A — .

1+ 12 ivi2 G127 0412

v

N
o3
~——

Here, ], , and b{_ ,, are numerical approximations for the largest and smallest
physical signal-velocities in the exact solution to the Riemann problem. Having
computed the approximate solver at the cell interface, we obtain the cell average at
the next time-ievel similar to (2.1),

1 r4n { -0
| ouie(x/m i— 1/2) dx+ EJ @ el i+ 12V A (4.3
_a2

This again can be written in conservation form

vitt=vi— Al LT L), {442}
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with the numerical flux-function

fHL{.)zz b, af(v) b7 o8V g)
i+ 17 b+ b,

i+1/2 i+1,2

bl 1n-b7 .
+o e il (Vig1— Vi), (4.4b)

+ —
bi+12 bl+17

where b, |, =max{b},,,0} and b7, , =min{b{, ,,0}; see [2] for details.
The HLLE-scheme (4.4) with the numerical signal velocities

bi, yp=min{a;, ,, u,—c;} (4.52)

and
biprp=max{a;, Uiy i) (4.5b)
where a¥, iz (k=1, .., 4) are the eigenvalues of the Roe linearisation for (1.6a) and

c=( yp/p)12 is the sound speed, is positively conservative. The proof is straight
forward: The numerical signal velocities (4.5) are lower and upper bounds for the
physical signal velocity. Therefore the average state (4.2) is given by

1 biyiat
Viep= RPN L{MT Ogp(x'/t; i+ 1) dx, (4.6)
where mpp(x’/7; i + 3) is the exact solution to the Riemann problem at the cell-inter-
face x;,,,,. As long as no vacuum is present, all states in the exact solution to the
Riemann problem (1.6) are inside the set (2.4). Since G is convex, the averaging
process (4.6) will give a value inside G. Thus the average state (4.6) is inside G.
Furthermore, the solution at the next time-level £”* ' is obtained from the averaging
process (4.3), which again will not take us outside G, since G is convex. Thus we
have proved that the HLLE-scheme is positively conservative.

An enlargement of the numerical signal velocities increases the numerical dissipa-
tion in the HLLE-scheme; e.g., the numerical signal velocities

b,+12 {Iu,+17|+c,+1,2,|ul+c,, |u1+1|+cz+1} (4.7a)
bl 2= ~bis 10 (4.7b)

where ¢, 1, =(af, 1 —a},1,)/2 and u,, 0= (a}, , +aj, 12)/2, reduce (4.4b) to
fii12= %{f(vi) + (v, )b}, 1oV — Vi)} (4.8)

which is a numerical flux function of Lax—Friedrich type. The scheme (4.4a), (4.8)
is very diffusive and gives significantly less accurate results than the scheme
(44), (4.5).

The numerical signal velocities (4.5) can be improved concerning the numerical
dissipation near rarefaction waves, subject to the restriction that the scheme (4.4)



GODUNOV-TYPE METHODS 223

is positively conservative. Some algebra shows that the scheme (4.4) is positively
conservative if the numerical signal velocities satisfy the inequalities (see Appendix},

(b}

i+ 12

_uz)2>ﬁch ‘4{,}35

s 2 5 P 1 ; P

(u,— b7, ) =B (/3“:—\ {4.9b}
' \ 2

and these results are the sharpest possible (in the one-dimensional case} for

bl 1.=b"(v;) and b}, |, =b*(v;, ). Hence the numerical signal velocities,

b’

: 1 > s

‘1 p=minf{a;, ., u,—fc;} (4.10a;
- o ] . Y 0

b, 1,=max{a;, v +PCiv1), {(4.10b}

lead to a positively conservative HLLE-scheme.
Since

ui—c;<u,— fc; and Ui F e <wioiteig (41

the numerical signal velocities (4.10) decrease the dissipation for most rarefaction
waves. If the states v, and v,_; are connected by a single shock wave, then the
numerical signal velocities (4.5) and (4.11) reduce both to

¢ _ 1 ,
bi12=0a, 1 or bivi2 Pt {412}

which gives the optimal numerical dissipation for a shock wave; see [2] for dezails.

Another problem associated with the failure of the Roe-average eigenvalues
;.15 (i=1, .., 4) for rarcefactions was addressed in [ 117]. M. Vinokur observed that
it is possible that the Roe average eigenvalue a;, ,, or 47 _, ., could lie outside the
range of values determined by A'(;) and A'(r,, ;), respectively, A%(v, and %, ).
In particular, if the normal velocities u; and u, ., are close to the sonic speed ¢,, the
corresponding eigenvalues could both be of one sign, while the Roe averaged eigen-
value could have opposite signs. Assume

aj, <A <A, ) (412}
which holds for all the examples in [117]. In this cass,
bz(+lr2:ai1+1,«'2<"]*j(ui)gll{vi—f—l) {4.14}

for the algorithms (4.5) and (4.10). Thus the numerical signal velocities (4.5} or
(4.10) introduce more numerical dissipation into the scheme (4.4) than the physical
signal speed A'(v;). However, the failure (4.13) is not significant for the scheme (4.4}
and also for Roe’s scheme (as we will see in the next section), because an enlarge-
ment of the numerical signal velocities retains the stability of the HLLE-scheme
{4.4); see [2] for details. Furthermore, we did not observe any loss of resolution in
the numerical solution through the additional numerical dissipation.
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5. SoME REMARKS ABOUT ROE’S METHOD

In this section we give a different simple explanation for the failure of Roe’s
method. A modified HLLE-scheme was proposed in [2]. The modified Riemann
solver is defined by

O rem(X/t; i+ 1/2)

v, for x'<bl, ¢

. £ 22 2 G 3
_ VivinH (5= p0)(07, 1087y 2R +1°+51+1 2074 12R7, 12) (5.1)
= , .
for bf, ,t<x'<b] |t

Vit for b}, ,t<x,

where R?, |, =R*(W;, ) and R*=R*(W,_ ) are the second and third right eigen-
vectors of the Jacobian matrix df(W,, ,,)=A(W,, ,,) evaluated at an average state
W2 =(0, 4,8, 6)%. 82, , =0 (W, ) and &] ,, =0’(W,, ,») are the coefficients
of the projection of (v;, ; —v;) onto these eigenvectors; ie.,
4
_ a2l D’
Vig1—V, = Z ai 1R (5:2)

£=1

82, ,, and 82 74 12 are positive parameters which control the amount of anti-diffusion
in the linear degenerate fields. For 62, ,,, =0 and 5, +1,2 =0, we retain the Riemann
solver (4.1). Several choices for the average state W, ;, are possible, we choose here

Piv1,2=~/PiPiv1,2> (5.3a)
[
. _\/piui+\/pi+lu[+l 53b
Uip12= — — (5.3b)
\/pz N Pit1
z+ 1 ,i
f,H,z_\/p_" 100+ (5.3¢)
\/p,-+\/p,-+1
. /o H.+ /p.. . H,
e e (53d)
VPt Piv
1 .
czz+m (’—U{ i+ 1,'2_"2"(”?+uz+’)?+1x2)}- (5.3¢)

The value ;. ,;, in (5.1) is an approximation for the velocity at the contact discon-
tinuity, defined by

_ bl 1+ b, n

Hip 1= _+1_§._+_1_ (5.4)

The Godunov-type-scheme corresponding to the Riemann solver (5.1) can again be
written in conservation form

W;'Hl:w?_i{?ﬁ 1,/2“?‘1—1;3} (5.52)
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with
bt . -b-
FHLLEM _ gHLLE  Zirlo Jisl2
i+12 1+1.2 b7
i+l7 i+ 1.2
$2 &2 53 N - .
{5 2 1+l,2R1+1’+5+12a1+17R1+L'2}" (ﬁSb!

The anti-diffusion coefficients in (5.1) are defined such that they take out excess
dissipation in the linear degenerate fields, subject to the restriction that the stability
of the HLLE-schemes is to be preserved; we set

Cryn2 _ £

—_—————=9;
Civriat Ui o

P
Ln
i

£2
07112~

it was noted in [2], that if we choose for the numerical signal velocities the largest
and smallest cigenvalues of a Roe-average matrix, ie.,

b’ and b: = {3.7

i+12 I+L7’

iy
o

l
i+12= 1+1'2

then the HLLEM-scheme (5.5) becomes equivalent to Roe’s scheme. If we apply
this scheme to the initial-value problems described in Proposition 1.1, then the pro-
jection values d2, , , and 4, |,, vanish and the HLLEM-scheme (5.5), (5.7} differs
from the HLLE-scheme (4.4), (4.5) only by the definition of the numerical signal
velocities. Computation of the average state (4.2), with the numerical signal
velocities (5.7) may result in a negative density for the case (b) of Proposition 1.1.
We obtain, furthermore, for w, = (p,, —m,, 0, ¥ and w,=(p,, ,, M1, 0. ¢, ¢}

— 1 4 g
U= €;<d;, and A2 <Uip1TCaye (3.8}

Thus, we conclude: The reason for the failure of Roe’s method in solving case {b)
of Proposition 1.1 is that the numerical signal velocities (in this case the eigenvaiues
of the Roe average matrix) of Roe’s Riemann solver underestimates the physical
signal velocities. A similar argument can be applied to the initial value probleins of
Proposition 1.2, if we reset the anti-diffusion coefficient 57, | , to zero.

Remark. The HLLEM-scheme can be rewritten as

1 3
— R
fi+1f2‘§{f( )+f 1+1) Z Q,4,1~05 ? {5'})
with
+ + 5
0! biin+tb 12 5 bl 1o
12T bJr k- al+1'2 b+ ,, (J‘iua;
1+ 1,2 i+ 1/2 i+127 I+12
+ — + :
2 _bi+1,v2+bi+1;’2 yz __2(1 b +17Dl+1 J/:Sf"‘b‘
T T ho o Yivia +“)~—————~_b+ b {5.10b;
i+1,2 i+1;2 je1 277
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+ — + -
3 __bi+1v"_’+bi+l,"2 3 —2(1 53 bi+1/2bi+1;’2 5.10
12T e e X1 (1— i+1/2)bTT- {5.10c)
P+l i+ 172 i+1,27 Yig1n2
+ — + -
4 _bi+1/2+bi+1/2 4 ) bi+1;zbi+1,‘z d
12T T s R A A A (5.10d)
i+1/2 i+ 172 i+12  Yiv12

The scheme (5.9) can also be considered as an improvement to Roe’s original
scheme. In contrast to the original Roe-scheme this scheme does not require
an artificial entropy fix and does not suffer under the instabilities described in
Section 3.

6. NUMERICAL RESULTS

The Riemann problem described in Propositions 3.1 and 3.2 occurs, e.g., when
reflected boundary conditions are used at a solid wall boundary and the fluid flow
is directed away from the wall. A typical example is the external flow behind an
obstacle. Here starting a steady state computation by setting the initial data equal
to the freestream flow field can be disastrous. In this section we show numerical
results for two test problems which complement our analytical findings. First
we consider a Riemann problem of the form (1.6) with the initial data
w,=(p,=1,m,=2,n,=0,e,=3)" and w,=(p,=1,m,=2,n,=0,e,=3)". Subse-
quently, the problems are abbreviated by merely quoting the right-hand state vec-
tor, here (1-2—-0-3) labelled 1 in Fig. 3.1. The solution of this problem consists of
two rarefaction waves, one travelling to the left and one to the right. The initial
data satisfy condition (b) of Proposition 3.1. The numerical results are depicted
in Figs. 6.1, 6.2, and 6.3. In all calculations we used a fixed uniform grid in space
with the step size 4x =0.01. The time increment t was calculated in each time step
according to

T

1
Axm?x {[ui|+ci}<§. (6.1)

Roe’s scheme [9] explodes after a few time-steps. Figure 6.1 shows numerical
results for Roe’s scheme with the entropy fix proposed by Harten and Hyman [5].
The pressure and the velocity of the exact solution are represented by the solid line,
the numerical approximation is represented by dots. Unphysical oscillations are
visible at time 7= 0.05. Roe’s scheme with the commonly used entropy fix in [7]
also fails after a few time steps. The results for the HLLE-scheme (4.4) at times
+=0.05 and 0.1 are depicted in Fig. 6.2. The HLLE-scheme solves this problem
without any difficulties. The next figure shows the results for the HLLEM/Roe-
scheme (5.9), (5.10) with the numerical signal-velocities (4.5). The results are similar
to the results for the HLLE-scheme. Figures 6.4-6.6 represent the results for a
Riemann problem of the form (1.6) with the initial data w,=(p,=1, m,= -1,
n,=n, e,=5T and w,=(p,=1,m,=1,n,=n,e,=5)". The exact solution consists
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of two rarefaction waves moving in opposite directions, separated by a shear flow
in the y-direction. The initial data with n =0 satisfy condition (c} of Proposition 1.1
{point 2 in Fig. 3.1). All of our schemes solved this problem without real difficulty,
although Fig. 6.4 shows some not entirely smooth behaviour in the density.
However, for the same test problem with n=2 (point 3 in Fig. 3.1}, Roe’s scheme
explodes after a few time-steps. This is caused by the presence of shear flow; see
Proposition 3.2b. The results for the HLLE-scheme and the modified HLLE-scheme
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'_f. /’—__—'—— I
o J l
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FiG. 6.1. Numerical result of Roe’s scheme with the entrepy fix in [5] for the 1-2-0-3 probiem at
time 1= 0.05.
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with 82, 1> Teset to zero are shown in Figs. 6.5 and 6.6. Both schemes solved this
test problem without breaking down, but the results from the unmodified scheme
are better behaved.

Concluding Remarks

Considerable importance attaches to any numerical scheme for which the internal
energy and density remains positive during the computational process. It was
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FIG. 6.2a. Numerical result of the HLLE-scheme for the 1-2-0-3 problem at time /= 0.05.
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proved that Godunov’s and the HLLE-scheme have this property, whilst schemes
which are based on a local linearized Riemann solver (e.g., Roe’s scheme) may lead
to an unphysical negative density or internal energy during the computational pro-
cess. The interpretation of Roe’s scheme as an HLLE-scheme with the appropriate
anti-diffusion term in the linear degenerate field leads to an improved scheme,
which does not require an artificial entropy fix and does not suffer from the
instabilities described in Section 3. The form (5.9} of this HLLEM-scheme can be
used to fix up computer programs, which are based on the original Roe-scheme.
These results open the way for the application of a class of conservative differencing
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F1G. 6.2b. Numerical result of the HLLE-scheme for the 1-2-0-3 problem at time ¢ =0.1.
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schemes in contexts where they have previously been regarded with suspicion.
Nevertheless, all our results are only first-order accurate as yet, and there is still

work to do in achieving consistently high-quality solutions.

APPENDIX: PROOF OF THE PosITIVITY CONDITION (4.9)

Each conserved variable g, in the central zone of the HLLE-Riemann solver (4.1)

is given by
[y g £
L ba=ba, fi—1,
B bt —b"
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Fic. 6.3. Numerical result of the HLLEM/Roe-scheme for the 1-2-0-3 problem of time ¢ =0.1.
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We omitted the subscript i+ 1/2 and set ¢,=g¢,.,.4, =¢;. We obtain for the
density

*=a7pz+a/p/ {,Z‘;Z.l’
b,—b, e

where we have used the abbreviations

a,=b,—u, and a,=u,—bh,. (A3}
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Sufficient conditions for positive density are

a,,a,=0 (A4)
and
b,~b,>0. (AS)
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Fic. 6.5. Numerical result of the HLLE-scheme for the 1-1-2-5 problem at time ¢=0.1.
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It follows from (AS5) and (A2) that

a,‘ta,zu,—u,. {AD

To ensure positive pressure we need

5 -
p*e* — Lm*2 + n*?) > 0. {ATY
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Fic. 6.6. Numerical result of the HLLEM/Roe-scheme for the 1-1-2-5 problem ai tume ¢ =0.1.
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Some algebra shows that this condition is equivalent to

1
y—1

(a,p,+asp)Na,p,+a,p,;)

1 , 1 ,
5 PPt~ 008,45 pep 0.~ v, asa,

1
-(azpzp/+a/pfpz)(uz—uf)_i(pz_p/)zzo' (Ag)

Condition (A8) defines the exterior of an ellipse or hyperbola in the plane (a,, a,).
One way to ensure that this condition is always satisfied is to assume v,—v, =0
(which is the worst case). We then treat the expression as quadratic in Ju=u, —u,
and insist that no values of the coefficients give real roots. This condition is

(arzpzpf—'_al’p(pz)z< —pqua[az(pz_p/)z

2
+,y__1pfpza/aq(azpz—'_a/p/)(aqpf+a!p/), (A9)

which is equivalent to

2 pzp/p7><a2_’y—l&>
y_l a2 ! 2 pz
+< 2 ><pfp,pz>(a3_>'_—_1&) >0. (A10)
'}v—l a/ 2 pf

Condition (A10) is satisfied by

y—1
st e (Alla)
,_y—1
a;;%—cf (c ~sound speed) (Allb)
’y

and these results are the sharpest possible of the form a,=a(q,) and a,=al(q,).
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